This page introduces the basics for combining two substructures. Therefore, consider two substructures A and B as depicted in the following figure:
The two substructures have a total of six nodes; the displacements of the nodes are described by a set of Degrees of Freedom (DoFs) which have different subscript indices depending on their function:
For the purpose of substructuring, the set of external forces $$\mathbf{f}$$ and motion $$\mathbf{u}$$ is extended by a set of interface forces $$\mathbf{g}$$ that keep the structures together:
$$ \mathbf{u} \overset{\Delta}{=} \begin{bmatrix} \mathbf{u}_{1}^\mathrm{{A}}\\ \mathbf{u}_{2}^\mathrm{{A}}\\ \mathbf{u}_{2}^\mathrm{{B}}\\ \mathbf{u}_{3}^\mathrm{{B}} \end{bmatrix}, \; \; \; \; \mathbf{f} \overset{\Delta}{=} \begin{bmatrix} \mathbf{f}_{1}^\mathrm{{A}}\\ \mathbf{f}_{2}^\mathrm{{A}}\\ \mathbf{f}_{2}^\mathrm{{B}}\\ \mathbf{f}_{3}^\mathrm{{B}} \end{bmatrix}, \; \; \; \; \mathbf{g} \overset{\Delta}{=} \begin{bmatrix} \mathbf{g}_{1}^\mathrm{{A}}\\ \mathbf{g}_{2}^\mathrm{{A}}\\ \mathbf{g}_{2}^\mathrm{{B}}\\ \mathbf{g}_{3}^\mathrm{{B}} \end{bmatrix} $$
The relation between dynamic displacements $$\mathbf{u}$$ and external forces $$\mathbf{f}$$ of the uncoupled problem is governed by the corresponding dynamic equation, such as presented in the modeling domains chapter.
When two or more substructures are to be coupled, two conditions must always be satisfied, regardless of the coupling method used:
$$ \mathbf{L} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0}\\ \mathbf{0} & \mathbf{I} & \mathbf{0}\\ \mathbf{0} & \mathbf{I} & \mathbf{0}\\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}, \;\;\; \mathbf{L}^\mathrm{T}\mathbf{g} = \mathbf{0} \rightarrow \left\{\begin{matrix} \mathbf{g}_1^\mathrm{A} = \mathbf{0}\\ \mathbf{g}_2^\mathrm{A} = – \mathbf{g}_2^\mathrm{B}\\ \mathbf{g}_3^\mathrm{B} = \mathbf{0} \end{matrix}\right. $$
$$ \mathbf{B} = \left [ \mathbf{0 -I \; \; I \;\; 0} \right ], \;\;\; \mathbf{Bu} = \mathbf{0} \rightarrow \left\{\begin{matrix} \mathbf{u}_{2}^\mathrm{{B}} – \mathbf{u}_{2}^\mathrm{{A}} = \mathbf{0} \end{matrix}\right. $$
Depending on whether one chooses the motion $$ \mathbf{u} $$ or the forces $$ \mathbf{g} $$ as unknowns at the interface, a primal or dual assembled system of equations is obtained.
Contact us for more VIBES
Contact our support team or call us on +31 85 822 50 49
Subscribe to our newsletter
Privacy statement. By submitting this form you agree to having your details registered in our database. At your request, we'll remove your details from our database immediately *